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Abstract: An SEIRS epidemic model with a nonlinear incidence rate is investigated. Mathematical analysis
reveals that the model has a locally asymptotically stable disease–free equilibrium (DFE) whenever a certain epi-
demiological threshold, known as the basic reproduction number R0, is less than unity. Using the theory of centre
manifold, the model exhibits the phenomenon of backward bifurcation, where the stable DFE coexists with a stable
endemic equilibrium when R0 < 1. The epidemiological consequence of this phenomenon is that the classical
epidemiological requirement of the reproduction number being less than unity becomes only a necessary, but not
sufficient, for disease elimination (hence, the presence of this phenomenon in the transmission dynamics of a dis-
ease makes its effective control in the community difficult).
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1 Introduction

In modelling of communicable disease, the incidence
rate (the rate of new infections) is considered to play
a vital role in ensuring that the model can give a
reasonable qualitative description of the disease dy-
namics [22]. Bilinear and standard incidence rate
have been frequently used in classical epidemiologi-
cal models [7, 18, 20, 23, 26, 32]. Such models al-
ways have only one endemic equilibrium when the
basic reproduction number R0 > 1, and the disease-
free equilibrium is always stable when R0 < 1 and
unstable when R0 > 1. So the bifurcation leading
from a disease free equilibrium to an endemic equi-
librium is forward. In recent years, actual data and
evidences observed for many diseases show that dy-
namics of disease transmission are not always as sim-
ple as shown in these models. Thus, many researchers
[4, 8, 9, 10, 13, 14, 15, 17, 19, 21, 30] have taken
into account oscillations in many nonlinear incidence
rates. For examples, Yorke and London [30] showed
that an incidence rate g(I)S = β(1− cI)S with pos-
itive c and time dependent β is consistent with the re-
sults of the simulations for measles outbreaks. Ca-
passo and his co-workers [9, 10], stressed the impor-
tance to consider nonlinear incidence rates for some
specific disease: the case of study was a cholera epi-
demic spread. Liu et al. [25] studied the codimension-

1 bifurcation for SEIRS and SIRS models with
the incidence rate βIpSq in [24]. Ruan and Wang
[27] studied saddle-node bifurcation, Hopf bifurca-
tion, BogdanovTakens bifurcation and the existence
of none, one and two limit cycles of an SIRS model
with an incidence rate of kI2S/(1 +αI2), which was
also proposed by Liu et al. [25]. van den Driessche
and Watmough [13, 14] studied an incidence rate of
the form

βI(1 + νIk−1), (1)

where β > 0, ν ≥ 0 and k > 0. When v = 0 this
incidence rate is the bilinear incidence rate βIS [7].
In [4, 19], they studied an SIRS and SEIR models,
respectively, with the incidence rate in (1) for ν > 0
and k = 2, showing stability switches and backward
bifurcations. The qualitative behavior of an epidemic
system with a backward bifurcation differs from that
of a system with a forward bifurcation in at least three
important ways. If there is a forward bifurcation at
R0 = 1 it is not possible for a disease to invade a pop-
ulation ifR0 < 1 because the system will return to the
disease–free equilibrium I = 0 if some infectives are
introduced into the population. On the other hand, if
there is a backward bifurcation at R0 = 1 and enough
infectives are introduced into the population to put the
initial state of the system above the unstable endemic
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equilibrium with R0 < 1, the system will approach
the asymptotically stable endemic equilibrium. Other
differences are observed if the parameters of the sys-
tem change to produce a change in R0. With a for-
ward bifurcation at R0 = 1 the equilibrium infective
population remains zero so long as R0 < 1 and then
increases continuously as R0 increases. With a back-
ward bifurcation at R0 = 1, the equilibrium infective
population size also remains zero so long as R0 < 1
but then jumps to the positive endemic equilibrium as
R0 increases through unity. In the other direction, if a
disease is being controlled by means which decrease
R0 it is sufficient to decrease R0 to unity if there is a
forward bifurcation at R0 = 1 but it is necessary to
bring R0 well below unity if there is a backward bi-
furcation. Thus, it is important to identify backward
bifurcations and establish thresholds for the control
of diseases. Although, this phenomenon of the back-
ward bifurcations has arisen the interests in epidemic
models (see [2, 5, 16, 29, 31, 4, 19]and references
therein), those reported have not been analyzed this
phenomenon of SEIES model with the nonlinear in-
cidence rate in (1) for ν > 0 and k = 2.

The objective of this paper is to derive conditions
ensuring that an SEIRS epidemic model with non-
linear incidence rate (given in (1) for ν > 0 and
k = 2) exhibits backward bifurcation and hence mul-
tiplicity of endemic equilibria. To this end,the four-
dimensional model monitors the dynamics of the sus-
ceptible individuals, (S); exposed individuals but not
yet infectious, (E); infectious individuals, (I), and
recovered individuals, (R). The SEIRS epidemic
model with nonlinear incidence rate consists of the
following equations:

dS

dt
= A− (μ+ βg(I))S + δR,

dE

dt
= βg(I)S − (ε+ μ)E, (2)

dI

dt
= εE − (γ + μ)I,

dR

dt
= γI − (δ + μ)R,

with g(I) = βI(1+ νI). The parameters (all positive
constants) have the following meaning: A is the re-
cruitment rate (either by birth or by immigration) into
the population (assumed susceptible), β is the infec-
tion rate at which susceptible individuals become in-
fected by those who are infectious, μ is the birth/death
rate, ε is the rate at which the exposed individuals be-
come infective (so that 1/ε is the mean latent period),
δ is the recovery rate and γ is the rate that recovered
individuals lose immunity and return to the suscepti-
ble class. The nonlinear incidence βSI(1 + νI) cor-
responds to an increased rate of infection due to two

exposures over a short time period. The single con-
tracts lead to infection at the rate βSI , whereas the
new infective individuals arise from double exposure
at a rate βνI2S [14].

This paper is organized as follows. The existence
of and threshold conditions for the onset of backward
bifurcation are discussed in Section 2. Numerical sim-
ulations are carried out to investigate the influence of
the key parameters on the phenomenon of in Section
3 and the conclusions is given in Section 4.

2 Qualitative analysis

2.1 Basic properties of the model
Consider the biologically-feasible region

Ω = {S,E, I, R) ∈ R
4
+|S + E + I +R ≤ A/μ} (3)

which is positively-invariant and attracting with re-
spect to the model (2).

The rate of change of the total population, ob-
tained by adding all the equations in the model (2)
gives

dN

dt
= A− μN. (4)

It follows that dN/dt ≤ 0 for N ≥ A/μ. Thus, a
standard comparison theorem (see [?]) can be used to
show that N(t) ≤ N(0)e−μt + A/μ(1 − e−μt). In
particular, N(t) ≤ A/μ if N(0) ≤ A/μ. Thus, Ω is
positively-invariant set. Hence, it is sufficient to con-
sider the dynamics of the flow generated by the model
(2) in Ω. It is easy to see, by comparison theorem, that
lim inft→∞N(t) ≤ A/μ. Thus, the omega limit sets
of all solutions of the model (2) in R

4
+ are contained in

Ω. That is, solutions in Ω remain in Ω for all time, and
those outside Ω (but in R

4
+) are eventually attracted to

Ω.

2.2 Disease-free equilibrium

The model (2) has the trivial, disease free equilib-
rium (DFE), namely, P 0 = (A/μ, 0, 0, 0). To find
the conditions under which this equilibrium is locally
asymptotically stable, the eigenvalues of Jacobian of
the model (2) evaluated at P 0 are

λ = −μ, λ = −(μ+ δ),

and the roots of quadratic equation

λ2 + (2μ+ ε+ γ)λ+ (μ+ ε)(μ+ γ)(1−R0), (5)

where

R0 =
εβA

μ(μ+ ε)(μ+ γ)
. (6)
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It can be shown that the remaining two eigenvalues
(the roots of (5)) have negative real parts if and only if
R0 < 1. Furthermore, it can be seen that at least one
of these eigenvalues has a positive real part if R0 > 1.
Thus, the following result is established.

Lemma 1 The disease–free equilibrium (P 0) of the
model (2) is locally asymptotically stable (LAS) if
R0 < 1 and unstable if R0 > 1 .

The threshold quantity R0 in (6) is called the basic re-
productive number of infection [1]. This number mea-
sures the average number of new infections generated
by a single infected individual in a completely sus-
ceptible population. The epidemiological implication
of Lemma 1 is that, in general, when R0 is less than
unity, a small influx of infected population into the
community would not generate large outbreaks, and
the disease dies out in time (since the DFE is LAS).
However, we show in the next subsection that the dis-
ease may still persist even when R0 < 1.

2.3 Existence of endemic equilibria and
backward bifurcation

In order to find equilibria (endemic equilibria) of the
model (2) where at least one of the infected compo-
nents of the model (2) is non-zero, the following steps
are taken. Let P ∗ = (S∗, E∗, I∗, R∗) represents any
arbitrary endemic equilibrium of the model (2). Set-
ting the right-hand sides of the model (2) to zero and
solve S, E, R from the last three equations of the
model (2) gives

S∗ = (ε+μ)(γ+μ)
εβ(1+νI∗) , E∗ = (γ+μ)I∗

ε ,

R∗ = γI∗
δ+μ .

(7)

Substituting (7) into the first equation of the model (2)
yields

a0I
∗2 + b0I

∗ + c0 = 0 (8)

where

a0 = νβμω,

b0 = β(μω − ενA(μ+ δ)), (9)

c0 = μ(μ+ δ)(μ+ γ)(μ+ ε) (1−R0) ,

ω = γ(μ+ ε+ δ) + (μ+ ε)(μ+ γ),

Clearly, the coefficient a0, in (9), is always positive
and, c0 is positive (negative) if R0 is less than (greater
than) unity, respectively. Since a0 > 0, the existence
of the positive solutions of (8) will depend on the signs
of b and c. If R0 > 1, then there are two roots of
(8) of which one root is positive and thus there is a
unique endemic equilibrium. If R0 = 1, then c0 = 0

and there is a unique nonzero solution of (8), I =
−b0/a0, which is positive if and only if b0 < 0. If
b0 < 0 there is a positive endemic equilibrium for
R0 = 1. Since equilibria depend continuously on R0

which shows that there exists an interval to the left of
R0 on which there are two positive equilibria

I =
−b0 ±

√

b20 − 4a0c0
2a0

. (10)

If c0 > 0 and either b ≥ 0 or b20 < 4a0c0, there are no
positive solutions of (8) and thus there are no endemic
equilibria. For different range of these parameters the
following results are established.

Theorem 2 The model (2) has:

(i) a unique endemic equilibrium in Ω if c0 < 0 ⇒
R0 > 1;

(ii) a unique endemic equilibrium in Ω if b0 < 0, and
c0 = 0 or b20 − 4a0c0 = 0;

(iii) two endemic equilibria in Ω if c0 > 0, b0 < 0
and b20 − 4a0c0 = 0;

(iv) no endemic equilibrium otherwise.

It is clear from Theorem 2 Case (i) that the model has
a unique endemic equilibrium wheneverR0 > 1. Fur-
ther, Case (iii) indicates the possibility of backward
bifurcation (where the locally-asymptotically stable
DFE co-exists with a locally-asymptotically stable en-
demic equilibrium ( see, for instance, [3, 6, 28]) in the
model (2) when R0 < 1. To find the bacward bi-
furcation, the discriminant b20 − 4a0c0 is set to zero
and solved for the critical value of R0, denoted by Rc,
given by

Rc = 1− b20
4a0μ(μ+ δ)(μ+ ε)(μ+ γ)

. (11)

Thus, Rc < R0 is equivalent to b20 − 4a0c0 > 0 and,
therefore, backward bifurcation would occur for val-
ues of R0 such that Rc < R0 < 1. The associated
bifurcation diagram is depicted in Figure 1. Thus, the
following result is established.

Lemma 3 The model (2) exhibits backward bifurca-
tion when Case (iii) of Theorem 2 holds and Rc <
R0 < 1.

The following result can be established using center
manifold theory [11] (in particular, using Theorem 4.1
in [12].
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Figure 1: Bifurcation diagram for backward bifurca-
tion in the plane (R0, I

∗) when ν = 0.000056 > ν∗.
Parameter values used are: A = 10, μ = 3.65×10−4,
β = 1.473197393×10−6, ε = 0.3, γ = 0.04, and δ =
0.2. With this set of parameters, Rc = 0.9951181087
and R0 = 0.9987000002 (so that, Rc < R0 < 1).

Theorem 4 Let

ν∗ =
μ[γ(μ+ ε+ δ) + (μ+ ε)(μ+ δ)]

Aε(μ+ δ)
, (12)

the model (2) undergoes backward bifurcation at
R0 = 1 if ν > ν∗ and forward bifurcation if ν < ν∗.

Proof. The following simplification and change of
variables are made on the model (2) first of all. Let
S = x1, E = x2, I = x3 and R = x4, so that
N = x1 + x2 + x3 + x4. Further, by using vector
notation X = (x1, x2, x3, x4)

T , the model (2) can be
written in the form dX

dt = (f1, f2, f3, f4)
T , as follows:

dx1
dt

:= f1 = A− (μ+ β(1 + νx3)x3)x1 + δx4,

dx2
dt

= f2 = β(1 + νx3)x3x1 − (ε+ μ)x2,

dx3
dt

= f3 = εx2 − (γ + μ)x3,

dx4
dt

= f4 = γx3 − (δ + μ)x4

(13)

Consider the case when R0 = 1. Suppose, fur-
ther, that β = β∗ is chosen as a bifurcation parameter.
Solving for β from R0 = 1 gives

β = β∗ =
μ(μ+ ε)(μ+ γ)

Aε
.

The eigenvalues of Jacobian of the system (13), eval-
uated at P 0 with β = β∗, are given by

λ1 = −μ, λ2 = −(μ+ δ), λ3 = −(2μ+ γ + ε),

λ4 = 0.

Thus λ4 = 0 is a simple zero eigenvalue and the
other eigenvalues are real and negative. Hence, when
β = β∗ (or equivalently when R0 = 1), the disease-
free equilibrium P 0 is a nonhyperbolic equilibrium,
the assumption (A1) of Theorem 4.1 in [12], is then
verified.

Now, a right eigenvector associated with the
zero eigenvalue λ4 = 0 are given by w =
(w1, w2, w3, w4)

T , where

w1 = −γk1 + (μ+ ε)k2
εk2

w3,

w2 =
k2
ε
w3, w3 = w3 > 0, w4 =

γ

k2
w3,

so that

w =

(

−k1γ + (μ+ ε)k2
εk2

,
k2
ε
, 1,

γ

k2

)T

, (14)

where k1 = μ+ δ + ε and k2 = μ+ δ.
Further, a left eigenvector associated with the zero

eigenvalue λ4 = 0 satisfying v · w = 1 are given by
v = (v1, v2, v3, v4)

T , where

v1 = 0, v2 =
ε

μ+ k3
, v3 =

μ+ ε

μ+ k3
, v4 = 0, (15)

where k3 = μ + γ + ε. The coefficients a and b de-
fined in Theorem 4.1 in [12] are computed as in the
following.

For the system (13), the associated non-zero par-
tial derivatives of the right hand side functions (fi) are
given by

∂2f1
∂x1∂x3

=
∂2f1
∂x3∂x1

= −β∗, ∂
2f1
∂x23

= −2βνA

μ
,

∂2f2
∂x1∂x3

=
∂2f2
∂x3∂x1

= β∗,
∂2f2
∂x23

=
2βνA

μ
,

∂2f1
∂x3β∗

= −A/μ, ∂2f2
∂x3∂β∗

= A/μ.

(16)

Using the expressions (14)-(16), it follows that

a =

4
∑

k,i,j=1

vkwiwj
∂2fk
∂xi∂xj

(0, 0)

=
2(μ+ ε)(μ+ γ)

μ+ k3

(

ν − μγk1 + (μ+ ε)k2
εAk2

)

=
2(μ+ ε)(μ+ γ)(ν − ν∗)

μ+ k3
,

and

b =

4
∑

k,i=1

vkwi
∂2fk
∂xi∂β∗

(0, 0)

=
εA

μ(μ+ k3)
.
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It is found that the coefficient b is always positive. The
coefficient a is positive if ν > ν∗, and negative if
ν < ν∗. Therefore, by Theorem A, the model (2) un-
dergoes backward bifurcation if ν > ν∗ and forward
bifurcation if ν < ν∗. The proof is complete.

It can be concluded that, from Lemma 3 and The-
orem 4, when Rc < Ro < 1, the model (2) exhibits
the phenomenon of backward bifurcation whenever
ν > ν∗ and forward bifurcation whenever ν < ν∗.
Although the phenomenon of backward bifurcation
has been established in many epidemiological settings
(see [2-6,18] and the references therein), to the au-
thors knowledge, this is the first time such a phe-
nomenon has been theoretically shown in the SEIRS
model (2). Further, as a consequence, it is instructive
to try to determine the ”cause” of the backward bifur-
cation phenomenon in the model (2). This is explored
below by considering the mass action equivalent of
the model (2). It is noted, from Theorem 4, that the
backward bifurcation phenomenon will not occur if
ν = 0, since the right-hand side of the inequality in
Theorem 4 is non-negative which is clarified the ab-
sence of backward bifurcation in the model (2) when
the non-linear incidence rate of the form βI(1+νI)S
is the bilinear incidence rate βIS (i.e., ν = 0)

3 Numerical Simulations
In this section aims to provide a numerical verification
of the above theoretical results presented and to show
their agreement with the endemic equilibria and their
stability properties. The model (2) is simulated using
the parameter values:

A = 10, μ = 3.65× 10−4, ε = 0.3,

γ = 0.04, δ = 0.2.
(17)

Using the parameter values in (17), the bifurcation pa-
rameters in (6) and (12) at R0 = 1 take the values

β∗ = 1.4751× 10−6 and ν∗ = 4.8698× 10−5.

Then, in order to satisfy the conditions R0 < 1,
R0 > 0, ν > ν∗ and ν < ν∗, the infection rate β and
ν are chosen to be β = 1.3575×10−6, 1.4732×10−6,
2.9483 × 10−6, ν = 5.6 × 10−5 and ν = 3 × 10−4,
respectively. The four different relevant cases are dis-
cussed.

Case I For β < β∗ and ν > ν∗, choosing β =
1.4732× 10−6 and ν = 5.6× 10−5 with the parame-
ter values in (17) give Rc = 0.9951 and R0 = 0.9987
(so that, ν > ν∗ and Rc < R0 < 1). The simula-
tion results using different initial conditions, depicted

in Figure 2, show that the model has a disease free
equilibrium (DFE) (corresponding to I∗ = 0) and two
endemic equilibria (corresponding to I∗ = 2485.6441
and I∗ = 192.0313, respectively). Further, Figure 2
shows that one of the endemic equilibria (correspond-
ing to I = 2485.6441 is locally asymptotically stable
(LAS), the other endemic equilibrium (corresponding
to I = 192.0314 is unstable (saddle), and the DFE
(corresponding to I = 0) is LAS. This clearly shows
the co-existence of two locally-asymptotically stable
equilibria when Rc < R0 < 1, confirming that the
model (2) undergoes the phenomenon of backward bi-
furcation if ν > ν∗ (as guaranteed by Lemma 3 and
Theorem 4).

Case II For β < β∗ and ν < ν∗, choosing ν =
3 × 10−5, β = 1.4732 × 10−6, 1.3575 × 10−6 with
the parameter values in (17) give Rc = 0.9403 and
R0 = 0.9987, Rc = 0.9449 and R0 = 0.9203 which
imply that Rc < R0 < 1 and R0 < Rc < 1, re-
spectively. It is found that the model (2) exhibits a
forward bifurcation as shown in Figure 3. As a con-
sequence, in the backward bifurcation scenario, these
studies show that if Rc < R0 < 1 and ν > ν∗,
then the disease control strongly depends on the ini-
tial sizes of the various sub-populations of the mod-
els (see Figure 2). On the contrary, if R0 < 1 (even
R0 < Rc < 1 or Rc < R0 < 1), reducing ν < ν∗
may result in disease eradication, which is provided
that the disease free equilibrium is locally asymptot-
ically stable. Hence, determining the threshold value
ν∗ of nonlinear incidence function may have a crucial
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Figure 2: Time series plot using different initial condi-
tions for the infectious population, I , of the model (2).
Parameter values used are: A = 10, μ = 3.65×10−4,
β = 1.473197393 × 10−6, ε = 0.3, γ = 0.04,
δ = 0.2, ν = 0.000056. With this set of parame-
ters, Rc = 0.9951181087 and R0 = 0.9987000002
(so that, Rc < R0 < 1 and ν > nu∗).
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importance in planning how to control a disease.

4 Conclusions

In this paper, an SEIRS epidemic model with a non-
linear incidence rate βI(1 + νI)S is rigorously anal-
ysed to gain insights into its qualitative dynamics. The
results are shown that the model with non-linear inci-
dence rate undergoes backward bifurcation if ν > ν∗
and Rc < R0 < 1, where the stable disease-free equi-
librium co-exists with a stable endemic equilibrium.
The backward bifurcation scenario may be qualita-
tively described as follows. In the neighborhood of
unity, for R0 < 1, a stable disease-free equilibrium
coexists with two endemic equilibria: a smaller equi-
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Figure 3: Bifurcation diagram for forward bifurcation
in the plane (R0, I

∗) when ν = 0.00003 < ν∗. Pa-
rameter values used are: A = 10, μ = 3.65 × 10−4,
ε = 0.3, γ = 0.04 and δ = 0.2. With this set
of parameters, (a) β = 1.473197393 × 10−6 gives
Rc = 0.9402518297 and R0 = 0.9987000002 (so
that, Rc < R0 < 1); (b) β = 1.357474618 × 10−6

gives Rc = 0.9449451750 and R0 = 0.9202500002
(so that, R0 < Rc < 1).

librium (i.e., with a smaller number of infective indi-
viduals) which is unstable and a larger one (i.e., with
a larger number of infective individuals) which is sta-
ble. These two endemic equilibria disappear if ν < ν∗
and R0 < 1. Moreover, the epidemiological signifi-
cance of the phenomenon of backward bifurcation is
that the classical requirement of R0 < 1 is, although
necessary, no longer sufficient for disease elimination.
In such a scenario, disease elimination would depend
on the initial sizes of the sub-populations (state vari-
ables) of the model. That is, the presence of backward
bifurcation in the SEIRS model (2) suggests that the
feasibility of controlling disease when R0 < 1 could
be dependent on the initial sizes of the sub-population
of the model (2) as confirmed by numerical simula-
tions (see Figure 2).

References:

[1] R.M. Anderson, R.M. May, Infectious Diseases
of Humans, Dynamics and Control, Oxford Uni-
versity Press, London, NewYork, 1991.

[2] J. Arino, C.C. McCluskey, P. van den Driessche,
Global results for an epidemic model with vacci-
nation that exhibits backward bifurcation, SIAM
J. Appl. Math. 64 (2003) 260-276.

[3] J. Arino, C.C. McCluskey, P. van den Driessche,
Global results for an epidemic model with vacci-
nation that exhibits backward bifurcation, SIAM
J. Appl. Math. 64 (2003) 260-276.

[4] B. Buonomo, D. Lacitignola, On the dynamics
of an SEIR epidemic model with a convex inci-
dence rate, Ric. Mat., 57(2008) 261-281.

[5] B. Buonomo, D. Lacitignola, On the backward
bifurcation of a vaccination model with nonlin-
ear incidence, Nonlinear Anal. Model. and Con-
trol, 2011, Vol. 16, No. 1, 3046

[6] F. Brauer, Backward bifurcation in simple vac-
cination models, J. Math. Anal. and Appl. 298
(2004) 418-431.

[7] F. Brauer, P. van den Driessche, Models for
translation of disease with immigration of infec-
tives, Math. Biosci. 171 (2001) 143-154.

[8] L.M. Cai, X.Z. Li, Analysis of a SEIV epidemic
model with a nonlinear incidence rate, Appl.
Math. Model. 33 (2009) 2919-2926

[9] V. Capasso, Global solution for a diffusive non-
linear deterministic epidemic model, SIAM J.
Appl. Anal. 35 (1978) 274-284.

WSEAS TRANSACTIONS on SYSTEMS
Wirawan Chinviriyasit, 

Sutawas Janreung, Settapat Chinviriyasit

E-ISSN: 2224-2678 226 Volume 17, 2018



[10] V. Capasso, G. Serio, A generalization of the
KermackMc Kendrick deterministic epidemic
model, Math. Biosci. 42 (1978) 41-61.

[11] J. Carr, Applications Centre Manifold Theory,
Springer-Verlag, New York, (1981).

[12] C. Castillo-Chavez, B. Song, Dynamical mod-
els of tuberculosis and their applications, Math.
Biosci. Eng. 1(2) (2004) 361-404.

[13] P. van den Driessche, J. Watmough, Epidemic
solutions and endemic catastrophes, Fields Inst.
Commun. 36 (2003) 247-257.

[14] P. van den Driessche, J. Watmough, A simple
SIS epidemic model with a backward bifurca-
tion, J. Math. Biol. 40 (2000) 525-540.

[15] W.R. Derrick, P. van den Driessche, Homo-
clinic orbits in a disease transmission model
with nonlinear incidence and nonconstant pop-
ulation, Discret. Contin. Dynam. Systems Ser.
B, 3 (2003) 299-309.

[16] S.M. Garba, A.B. Gumel, A. Bakar, Backward
bifurcations in dengue transmission dynamics,
Math. Biosci. 215 (2008) 11-25.

[17] A.B. Gumel, S.M. Moghadas, A qualitative
study of a vaccination model with non-linear in-
cidence, App. Math. Comput., 143(2003) 409-
419.

[18] L. Guihua, W. Wendi, J. Zhen, Global stability
of an SEIR epidemic model with constant im-
migration, Chaos, Solitons & Fractals 30 (2006)
1012-1019.

J. Hofbauer, J. So, Uniform persistence and re-
pellors for maps, Proc. Amer. Math. Soc. 107
(1989), 1137-1142.

[19] Y. Jin, W. Wang, XS. Iao, A SIRS model with a
nonlinear incidence, Chaos Solitons Fractals 34
(2007) 1482-1497.

[20] A. Korobeinikov, Lyapunov functions and global
properties for SEIR and SEIS epidemic models,
Math. Med. Biol. 21 (2004) 7583.

[21] A. Korobeinikov, Global properties of infectious
diseasemodels with nonlinear incidence, Bull.
Math. Biol. 69 (2007) 1871-1886.

[22] S.A. Levin, T.G. Hallam, L.J. Gross, Applied
Mathematical Ecology, Springer, New York,
1990.

[23] G. Li, Z. Jin Z., Global stability of an SEIR epi-
demic model with infectious force in latent in-
fected and immune period. Chaos, Solitons &
Fractals 25(2005) 1177-84.

[24] W.M. Liu, H.W. Hethcote, S.A. Levin, Dynam-
ical behavior of epidemiological models with
nonlinear incidence rates, J. Math. Biol. 25
(1987) 359-380.

[25] W.M. Liu, S.A. Levin, Y. Iwasa, Influence of
nonlinear incidence rates upon the behavior of
SIRS epidemiological models, J. Math. Biol. 23
(1986) 187-204.

[26] Z. Ma, Y. Zhou, W. Wang, Z. Jin, Mathematical
Models and Dynamics of Infectious Diseases,
China Sciences Press, Beijing, 2004.

[27] S. Ruan, W. Wang, Dynamical behavior of an
epidemic model with a nonlinear incidence rate,
J. Diff. Eq. 188 (2003) 135-163.

[28] O. Sharomi, C.N. Podder, A.B. Gumel, E.H. El-
basha, J. Watmough, Role of incidence func-
tion in vaccine-induced backward bifurcation in
some HIV models, Math. Biosci. 210 (2007)
436-463.

[29] W. Wang, Backward bifurcation of an epidemic
model with treatment, Math. Biosci. 201 (2006)
5871.

[30] J.A. Yorke, W.P. London, Recurrent outbreaks
of measles, chickenpox and mumps II, Am. J.
Epidemiol. 98 (1973) 469-482.

[31] X. Zhang, X. Liu a, Backward bifurcation of an
epidemic model with saturated treatment func-
tion, J. Math. Anal. Appl. 348 (2008) 433-443.

[32] J. Zhang, Z. Ma, Global dynamics of an SEIRS
epidemic model with saturating contact rate,
Math. Biosci. 185 (2003) 15-32.

WSEAS TRANSACTIONS on SYSTEMS
Wirawan Chinviriyasit, 

Sutawas Janreung, Settapat Chinviriyasit

E-ISSN: 2224-2678 227 Volume 17, 2018




